Code: 20EE3503

III B.Tech - I Semester - Regular Examinations - DECEMBER 2022

ELECTRICAL POWER GENERATION, TRANSMISSION AND DISTRIBUTION

(ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks		
UNIT-I							
1	a)	Sketch the schematic diagram of a typical	L3	CO2	7 M		
		pumped storage power plant and briefly					
		explain each component in it.					
	b)	What is wind power? Illustrate the factors	L3	CO2	7 M		
		which affect the distribution of wind energy.					
		What are the environmental effects of wind					
		power plant?					
\mathbf{OR}							
2	a)	Sketch the necessary diagram of thermal	L3	CO2	7 M		
		power plant and briefly explain the working					
		of coal handling plant.					
	b)	Demonstrate PV module and PV array.	L3	CO2	7 M		
		What will be their effect on society?					

		UNIT-II				
3	a)	Calculate the capacitance of a 100 km long	L3	CO3	7 M	
		3-phase 50Hz Transmission line consisting				
		of 3 conductors, each of diameter 2 cm and				
		spaced 2 m at the corners of an equilateral				
		triangle.				
	b)	Calculate the loop inductance per km of a	L3	CO3	7 M	
		single phase overhead transmission line				
		when conductors have relative permeability				
		of (i) 1 (ii) 100. Each conductor has a				
		diameter of 1 cm and they are spaced 5 m				
		apart.				
		OR				
4	a)	Evaluate the inductance per conductor of 3-	L3	CO3	7 M	
		phase transposed line of conductors spaced				
		at corners of a triangle of side 3m. Diameter				
		of conductor is 1cm.				
	b)		L3	CO3	7 M	
		phase balanced 3-phase 3 wire line with				
		symmetrical spacing.				
		UNIT-III	- 1			
5	a)	Find the expressions for i) sending end	L4	CO4	7 M	
		voltage ii) sending end current by analyzing				
		the medium transmission line using nominal				
	4 \	T network.	- 1	~		
	b)	Obtain ABCD constants by analyzing	L4	CO4	7 M	
		Rigorous Solution of long transmission line.				
OR						
6	a)	Solve efficiency and regulation of a 3-	L4	CO4	7 M	
		phase, 100km, 50Hz transmission line				
		delivering 20MW at a P.f of 0.9 lagging and				

_	1		Т				
		132 KV to a balance load. The conductors					
		are copper, each having resistance 0.1					
		ohm/km, 1.5 cms outside dia spaced					
		equilaterally 2 meters, use nominal – T					
		method.					
	b)	An overhead line has following data. Span	L3	CO3	7 M		
		length=200m, Conductor cross section area					
		1.29cm ² , Weight of conductor = 1.17 kg/m,					
		Ultimate stress=4250kg/cm ² of projected					
		area, Factor of safety = 5, wind pressure					
		122kg per square meter of projected area.					
		Calculate sag.					
		UNIT-IV					
7	a)	What is an insulator, What are the	L3	CO5	7 M		
		requirements of Insulators? Explain					
		different types of insulators and justify their					
		application in practical power system.					
	b)	Explain the different factors effecting	L3	CO5	7 M		
		corona and mention its advantages and					
		disadvantages.					
		OR					
8	a)	Explain grading of cables. Compare the	L3	CO5	7 M		
		grading of cables with respect to practical					
		power system.					
	b)	In a 3-phase 33 KV overhead line, there are	L3	CO3	7 M		
		three units in the string of insulators. If the					
		capacitance between each insulator pin and					
		earth is 11% of self –capacitance of each					
		insulator, find (i) the distribution of voltage					
		over 3 insulators and (ii) String efficiency.					

UNIT-V						
9	a)	A 2-wire d.c. distributor cable AB is 2 km	L4	CO4	7 M	
		long and supplies loads of 150A, 250A,				
		400A situated 400 m, 1600 m and 2000 m				
		from the feeding point A. Each conductor				
		has a resistance of 0.025 ohm per 1000 m.				
		Calculate the p.d. at each load point if a p.d.				
		of 250 V is maintained at point A.				
	b)	Compare DC distribution and AC	L4	CO4	7 M	
		distribution systems.				
OR						
10	a)	A 2 wire dc distributor 300m long is	L4	CO4	7 M	
		uniformly loaded with 2A/m. Resistance of				
		single wire is 0.30hms/km. calculate voltage				
		drop in distributor i) If the distributor is fed				
		at one end, ii) If distributor is fed at both				
		ends with equal voltages. Comment on the				
		result.				
	b)	Analyze the voltage of calculations in AC	L4	CO4	7 M	
		distributor when power factors referred to				
		receiving end voltage.				